Bond Price Arithmetic


 Rachel Blankenship
 6 years ago
 Views:
Transcription
1 1 Bond Price Arithmetic The purpose of this chapter is: To review the basics of the time value of money. This involves reviewing discounting guaranteed future cash flows at annual, semiannual and continuously compounded rates. To learn how to handle cash flows that are unequally spaced, or where there are fractional periods of time to particular cash flows. To understand the market convention of quoting prices, computing accrued interest and communicating prices in a yield form. To set the stage for a deeper analysis of fixed income products. 1.1 FUTURE VALUE AND COMPOUNDING INTERVALS Let $P be invested at a simple interest rate of y% per year for one year. The future value of the investment after one year is V 1 where: V 1 = P (1 + y) and after n years the value is V n where: V n = P (1 + y) n 1
2 2 CHAPTER 1: BOND PRICE ARITHMETIC If interest is compounded semiannually then after n years: V n = P [1 + y 2 ]2n If interest is compounded m times per year then after n years: V n = P [1 + y m ]m n As the compounding interval gets smaller and smaller, i.e. as m, the accumulated value after n years increases, because interest is being earned on interest. If interest is compounded continuously at rate y, then after n years the accumulated value is: V n = lim m P [1 + y m ]m n Mathematicians have shown that this limit can be expressed in a simple way. In particular, lim m [1 + y m ]m n = e yn where e x is the exponential function that can be written as follows: 1 e x =1+x + x2 2 + x3 +...for all values of x. 6 Hence, with continuous compounding, the future value is: V n = Pe yn Example The future value of a $100 investment compounded at 10% per year simple interest is $110; compounded semiannually the future value is 100(1.05) 2 = $110.25; and compounded continuously is 100e 0.10 = $ Given one method of computing interest, it is possible to find another compounding rate that leads to the same terminal wealth. For example, assume the semiannual compounding rate is y. Then after n years we have: V n = P [1 + y 2 ]2n 1 The exponential expansion shows that when x is very small, e x 1+x. In this case x is a simple return. For larger values of x, the higher order terms become important.
3 CHAPTER 1: ANNUALIZING HOLDING PERIOD RETURNS 3 The continuous compounding rate that leads to the same terminal wealth can be established by solving the equation for y : V n = P [1 + y 2 ]2n = Pe y n Taking logarithms on both sides leads to y n = ln[(1 + y 2 )2n ] = 2n ln[(1 + y 2 )] or y = 2 ln[(1 + y 2 )] Example A semiannual rate of 10% per year is given. The equivalent continuously compounded yield is y = 2 ln[(1 + y )] = 2 ln(1.05) = 9.758% ANNUALIZING HOLDING PERIOD RETURNS The price of a contract that promises to pay $100 in 0.25 years is $98.0. Let R represent the return obtained over the period. The holding period yield is R = = or 2.04%. The holding period yield does not adjust for the length of the period. To make comparisons between investments held for different time periods, it is common to annualize the yield. This is usually done in one of two ways, either as simple interest, or as compounded interest. Example (i) The annualized simple interest in the last example is given by multiplying the holding period yield by the number of periods in the year, namely 4. Specifically, the annualized yield is = 8.16% (ii) The compounded rate of return in the last example is given by(1 + R) n 1, where n = 4. This value is (1.0204) 4 1=8.42%. In the above example the compounding interval was taken to be quarterly. In many cases the investment period could be quite small, for example one
4 4 CHAPTER 1: BOND PRICE ARITHMETIC day. In this case the compounded annualized return is (1 + R) 365 1, where R is the one day return. If the holding period is small, then the calculation of annualized return can be approximated by continuous compounding. Specifically, for R close to zero, and n large, (1 + R) n e nr. Example An investment offers a daily rate of return of A one million dollar investment for one day grows to (1, 000, 000)( ) = $1, 000, 250. The annual rate, approximated by continuous compounding, is e 365( ) 1= 9.554% Given the annualized continuously compounded return is y = , the simple return for a quarter of a year is e ( )(0.25) 1=2.417%. In all calculations care must be taken that the annual interest rate used is consistent in all calculations. For example, if a security returns 10% over a six month period, then the equivalent continuous compounded return is obtained by solving the equation e y(0.5) =1.10. Equivalently, y = log(1.10)/0.5 = 19.06% Compounding Over Fractional Periods The future value of $P over 2 years when compounding is semi annual is P (1 + y 2 )4. Raising (1 + y ) to the power of 4 reflects four semiannual interest 2 payments. If the time horizon is not a multiple of six months, then establishing the future value is a problem. For example, if the time horizon is 2.25 years, the future value could be written as P (1 + y 2 )4 (1 + y 2 )0.5. The handling of the fractional period is not altogether satisfactory, and there is no real theory to justify this calculation. However, this calculation is one popular market convention. If compounding was done quarterly, then the answer to the above problem is P (1+ y 4 )9. Of course, if the time horizon was 2.26 years, then compounding quarterly would not solve the problem, and we would again encounter the problem of computing interest over a fraction of a period. If compounding is done continuously then the problem of handling fractional periods disappears. The future value of P dollars over T years is Pe yt.
5 CHAPTER 1: DISCOUNTING DISCOUNTING The present value of one dollar that is received after n years, assuming the discount rate is y% per year with annual compounding, is given by PV =1 1 (1 + y) n If compounding is done m times per year, the present value is: 1 PV =1 (1 + y m )n m If the one dollar is discounted continuously at the rate of 100y% per year, the present value is: PV =1 e y n 1.4 BOND PRICES AND YIELD TO MATURITY A coupon bond is a bond that pays fixed cash flows for a fixed number of periods, n say. Typically, the cash flows in all the periods are equal. At the last period a balloon payment, referred to as the face value of the bond, is also paid out. Typically, the coupon is expressed as a fraction of the face value of the bond. In what follows we will take c to be the coupon rate, and C = c F to be the dollar coupon. If the coupons are annual coupons, of size C, and the face value is F, then the yieldtomaturity of the bond is the discount rate, y, that makes the following equation true. B 0 = C 1+y + C (1 + y) C + F (1 + y) n where B 0 is the actual market price of the bond. The coupon of a bond refers to the dollar payout that is made in each year. If coupons are paid annually then each cash flow is of C dollars. Payments at frequencies of once a year are appropriate for typical bonds that are traded in the Eurobond market. For bonds issued in the US, however, the typical convention is for coupon payments to be made semiannually. Such a bond would therefore pay half its coupon payment every six months. In this case, the yieldtomaturity of a bond that matures in exactly n years, is the value for y that solves the following equation: B 0 = C/2 1+y/2 + C/2 C/2+F (1 + y/2) 2 (1 + y/2) 2 n (1.1)
6 6 CHAPTER 1: BOND PRICE ARITHMETIC Example Consider a bond with a 10% coupon rate and 10 years to maturity. Assume the face value is $100 and its price is $102. The bond will pay 20 coupons of $5.0 each, plus the face value of $100 at the end of 10 years. The value of y that solves the above equation is given by y =9.6834%. Clearly, the yieldtomaturity of a bond that pays coupons semiannually is not directly comparable to the yieldtomaturity of a bond that pays coupons annually, since the compounding intervals are different. 1.5 ANNUITIES AND PERPETUITIES An annuity pays the holder money periodically according to a given schedule. A perpetuity pays a fixed sum periodically forever. Suppose C dollars are paid every period, and suppose the per period interest rate is y. Then the value of the perpetuity is: P 0 = i=1 C (1 + y) i The terms in the sum represent a geometric series and there is a standard formula for this sum. In particular, it can be shown that 2 P 0 = i=1 C (1 + y) i = C y (1.2) As an example, if a perpetuity paid out $100 each year and interest rates were 10% per year, then the perpetuity is worth 100/0.10 = $ To see this let a = 1. Let Sn be the sum of the first n terms of the cash flows of the (1+y) perpetuity. That is S n = ac + a 2 C a n C Now, multiply both sides of the equation by a to yield as n = a 2 C a n C + a n+1 C. Subtracting the equations lead to (1 a)s n = ac a n+1 C Hence S n = ac an+1 C 1 a. Substituting for a and letting n leads to limit n S n = C y.
7 CHAPTER 1: ANNUITIES AND PERPETUITIES 7 The value of a deferred perpetuity that starts in n years time, with a first cash flow in year n + 1, is given by the present value of a perpetuity or ( ) 1 C P n = (1 + y) n (1.3) y By buying a perpetuity and simultaneously selling a deferred perpetuity that starts in n years time, permits the investor to receive n cash flows over the next n consecutive years. This pattern of cash flows is called an nperiod fixed annuity. The value of this annuity, A 0 say, is clearly: A 0 = P 0 P n = C y [1 1 (1 + y) n ] (1.4) Rewriting the Bond Pricing Equation A coupon bond with n annual payments $C and face value $F can be viewed as an n period annuity together with a terminal balloon payment equal to F. The value of a bond can therefore be expressed as B 0 = C y [1 1 (1 + y) ]+ F (1.5) n (1 + y) n where y is the per period yieldtomaturity of the bond. When F =$1.0, the coupon is given by C = c 1=c. Ify = c then from the above equation, it can be seen that B 0 = 1. Hence, when the coupon is set at the yield to maturity, the price of a bond will equal its face value. Such a bond is said to trade at par. If the coupon is above (below) the yieldtomaturity, then the bond price will be set above (below) the face value. Such bonds are referred to as premium (discounted) bonds. Unequal Intervals Between Cash Flows So far we have assummed that the time between consecutive cash flows is equal. For example, viewed from a coupon date, the yield to maturity of a bond with semi annual cash flows is linked to its market price by the bond pricing equation: B 0 = m j=1 C/2 (1 + y/2) j + F (1 + y/2) m where y is the annual yield to maturity, C is the annual coupon and m is the number of coupon payouts remaining to maturity. In this equation, the first coupon is paid out at date 1, in six months time. If the first of the m
8 8 CHAPTER 1: BOND PRICE ARITHMETIC cash flows occurred at date 0, then the price of the bond is: m C/2 B 0 = (1 + y/2) j 1 + F (1 + y/2) m 1 j=1 If the first coupon date is not immediate but occurs before 6 months, then the above equation must be modified. Specifically, the above equation can be used to price all the cash flows from the first cash flow date. This value, is then discounted to the present date. Specifically, the yieldtomaturity of a coupon bond is defined to be the value of y that solves the equation: B 0 = 1 (1 + y/2) p m j=1 C/2 (1 + y/2) j 1 + F (1.6) (1 + y/2) m 1 where p = t n /t b and t n is the number of days from the settlement date to the next coupon payment, and t b is the number of days between the last coupon date and the next coupon date. In this equation we have assumed that the total number of coupons to be paid is m. This way of handling fractional periods is the market convention used in the US Treasury bond market. 1.6 PRICE QUOTATIONS AND ACCRUED INTEREST If a coupon bond is sold midway between coupon dates, then the buyer has to compensate the seller for half of the next coupon payment. In general, for Treasury bonds, the accrued interest, AI, that must be paid to the previous owner of the bond is determined by a straight line interpolation based on the fraction of time between coupon dates that the bond has been held. Specifically, AI = t l t b where t l is the time in days since the last coupon date, and t b is the time between the last and next coupon date. The computation of accrued interest using this convention is termed actual/actual. The first actual refers to the fact that the actual days betwen coupons are used in the calculation. The second actual refers to the fact that the actual number of days in a year are used. The above convention is standard for Treasury bonds traded in the US. Other methods of computing accrued interest that apply in different markets will be considered later. Market convention requires that US Treasury bond price quotations be reported in a particular way. A face value of $100 is assumed and the quotation ignores the accrued interest. The actual cost, or invoice price of a bond, corresponding to B 0 in the equation (1.6) given a quotation is: Invoice Price = Quoted Price + Accrued Interst
9 CHAPTER 1: PRICE QUOTATIONS AND ACCRUED INTEREST 9 The specific rule for computing accrued interest and translating quoted prices from a newspaper into market prices vary according to the particular fixed income product. Example A Eurobond is a bond issued by a non European firm in Europe. Typically, interest is paid annually, and yields are simple annual yields. The accrued interest in this market are not based on actual/actual, but rather on 30/360. In this convention each month is counted as having 30 days and each year has 360 days. Say a bond pays coupons on August 1st of each year and the settlement date for the transaction falls on April 10th. The seller has held the bond for 8 months and 10 days. Under this convention the accrued interest is based on = Specifically, the accrued interest is 25/36 th of the annual coupon. This accrued interest is added to the quoted price to obtain an invoice price. Given the invoice price, a yield for this product can be obtained using the appropriate bond pricing equation. Specific products and the market conventions related to compounding frequency, quotation format, and the handling of accrued interest will be discussed in more detail in future chapters. The important point here is that the conventions are market specific. The accrued interest convention makes the quoted price process smooth over time. Actual market prices of bonds fall at coupon dates. Just before a coupon, the price of a bond with n years to maturity is B 0 = C 2 + 2n i=1 C/2 (1 + y/2) i (1 + y/2) 2n Since the seller has held the bond over the entire period, (t l = t b ) the accrued interest is C 2 and the quoted price, Q 0 say, is the above market price less C 2,or Q 0 = 2n i=1 C/2 (1 + y/2) i (1 + y/2) 2n Immediately after the coupon has been paid, the bond price is given by B + 0 = 2n i=1 C/2 (1 + y/2) i (1 + y/2) 2n The drop in price, B 0 + B 0, equals the actual coupon paid out. Since the new accrued interest is now zero ( t l = 0), the new quoted price equals the new market price, which in turn equals the old quoted price. That is, quoted prices remain unchanged.
10 10 CHAPTER 1: BOND PRICE ARITHMETIC 1.7 COMMON INTEREST RATE CONVENTIONS Securities are issued with cash flows that occur at different time intervals. To compare rates it is often necessary to switch from one type of rate, based on a particular compounding interval, to another rate. Example A rate of 9% semiannual is equivalent to a ( )2 1=9.2025% annual rate. A 9% semiannual rate is also equivalent to a daily rate of ( ) = % per day. On annualizing this rate we obtain = A 9% semiannual rate is equivalent to a daily rate of %. Over a 100 day period, the rate is ( ) 100 1= or %. Annualizing this rate we obtain =8.9097%. The effective annualized rate of this loan for 100 days is %. Table 1.1 shows the market convention of rates in particular markets. Table 1.1 Market Convention of Rates in Particular Markets UK Money Markets Annual Actual/365 US & Euromoney Markets Annual Actual/360 US Treasury Bonds Semiannual Actual/365 Eurobonds Annual 30/360 US Federal Agencies, Municipals, Corporates Semiannual 30/360 US Commercial Paper, Bankers Acceptances Discount Basis, Actual/360 Commercial Paper Discount Basis, Actual/365 Examples (i) Assume the semiannual coupon periods are divided into 181 and 184 days. Assume 10m dollars are borrowed at 10 % semiannual actual/365. Then, the coupon payments of $1m over the year would be split up into payments of 10m = $495, , and 10m = $504, (ii) The same loan done on a 30/360 basis would have two cash flows of $500,000 each. The annual total is the same, but the size and timing of the individual cash flows are different.
11 CHAPTER 1: YIELDS AS A METHOD OF COMMUNICATING PRICES 11 (iii) Table 1.2 shows the effective annual rates of a 10% quotation for several market conventions. Table 1.2 Examples of Market Conventions Convention Computation Effective Annual Rate Annual Actual/365 ( ) 1 =10.0% Annual Actual/360 ( ) 1 =10.14% Semiannual Actual/365 ( )2 1 =10.25% Semiannual Actual/360 ( )2 1 =10.40% Monthly Actual/365 ( )12 1 =10.47% Monthly Actual/360 ( )12 1 =10.62% 1.8 YIELDS AS A METHOD OF COMMUNICATING PRICES The invoice price of a bond is the amount of dollars one requires in order to purchase it. Once you know the price, you can compute its yield using an appropriate formula. Conversely, if the yield of a bond is given, then provided you understand the market convention associated with the fixed income product, the unique price of the bond can be established, the accrued interest computed, and a quoted price can be established. The mapping from yields to quoted prices requires understanding the compounding mechanism (eg. annual or semiannual), the handling of fractional periods and the computation mechanism for accrued interest. Given these rules, prices can be quoted in yield form. While yields associated with different fixed income products may be useful for communicating price information, one has to be careful in interpreting these numbers. Higher yields do not necessarily imply higher returns, or higher risks. As a simple example, comparing yields of a coupon bond that pays annually, with a coupon bond that pays semiannually may be misleading. While in some cases the yield of a fixed income product may have a simple economic interpretation, in others no simple interpretation exists. For example, consider a straight default free coupon bond. Its price is the present value of the bonds cash flows using the yield as a discount rate. On the other hand, consider a coupon bond that has a call feature. The yield that is given
12 12 CHAPTER 1: BOND PRICE ARITHMETIC to characterize its price cannot be interpreted as a discount rate for all the promised cash flows to the maturity date. 3 In general, then, while yields are often used to characterize prices of fixed income products, in general they may not have simple economic interpretations, and certainly do not provide a common ground by which their relative benefits can be accessed. Given a bond price, there is no theoretical reason why coupon bonds have to have their yields to maturity computed according to any market convention. For example, we could define the continuously compounded yield to maturity of a bond that has face value F, and pays C dollars at times t 1, t 2,...,t n and face value F, is given by the value y that solves the equation. B = Ce yt1 + Ce yt2 + Ce yt (F + C)e ytn (1.7) In this equation the times t 1, t 2..., t n are all expressed in years and need not be equidistant. This definition of a yield to maturity is as valid as any other definition, but is not adopted in any specific market as a normal market convention. 1.9 CONCLUSION The purpose of this chapter has been to review the basics of discounting at annual, semiannual and continuously compounded rates and to obtain some insight into how prices are connected to specific yields according to market conventions. In order to obtain the invoice price of a bond, its quoted price may have to be adjusted by accrued interest. The computation of accrued interest varies according to the particular product. We illustrated the adjustment for Treasury bonds, where the actual/actual rule holds and for eurobonds, where a 30/360 rule holds. Given the invoice price, the quoted yield for the particular fixed income product can also be obtained. The way in which the yield is computed also depends on the particular product. Treasury bond yields, for example, are reported in semiannual form while Eurobonds are reported using annual compounding. Given the market convention, price information can be conveyed using their appropriate yields. In general, however, the particular yieldtomaturity statistic that is computed for a product may not provide useful economic information relating to its potential return or risk. 3 We shall explore this in another chapter. The problem for callable bonds is that the exact number of future cash flows is not certain since the bond can be called at any time after the call date.
13 CHAPTER 1: EXERCISES EXERCISES 1. An investment requires an initial investment of $100 and guarantees $104 back in 0.25 years. (a) Compute the holding period return. (b) Compute the simple annualized yield. (c) Compute the compounded annualized yield for the investment, assuming quarterly compounding. (d) What is the annualized continuously compounded rate of return for this investment. 2. A discount bond with a maturity of 5 years and a face value of $1000 is priced at $ (a) Compute the continuously compounded yield tomaturity. (b) Compute the semi annualized yield to maturity. 3. A discount bond with a face value of $1000 is currently priced at $ The maturity of the bond is 6 years. The bond, however, is callable in 3 years for a price of $ (a) Compute the continuously compounded yieldtomaturity. (b) The yield to call is the yield to maturity obtained under the assumption that the call date is the maturity date. Compute the continuously compounded yieldtocall. (c) Interpret the above two numbers and comment on the potential problems with interpreting these two yield measures. 4. The quoted price of a Treasury bond with settlement date January 6 th 1999 is $ The bond s coupon is 4 1/4. It matures on November 15 th The number of days in the current coupon period is 182, and the number of days from settlement to the next coupon date is 130 days. Compute the accrued interest, the invoice price of the bond, and the semiannual yield to maturity. 5. In this problem you will learn how to use excel to compute prices of coupon bonds when cash flows are equally spaced. In particular, you will compute bond prices four different ways. The main idea here is to show that the analytical solution for the bond price is helpful, and to introduce you to excel s PRICE function that produces a clean price and is fairly useful. The benchmark model we will solve is a 5 year maturity bond paying annual coupons rate of 5% seminanually. The face value is $100. The yieldtomaturity is given as 6%. In excel set the inputs up as follows:
14 14 CHAPTER 1: BOND PRICE ARITHMETIC INPUTS Annual Coupon Rate (AC) 0.05 Yield to maturity (Y) 0.06 Number of payments per year (num) 2 Number of Periods (N) 10 Face Value (FV) 100 OUTPUTS Discount rate/period (Rate) 0.03 Coupon payment (c) 2.5 For each of these variables label them using Insert,Name,Define. Excel will now recognise these variables when you refer to them. Now we are ready to compute bond prices. (a) Set up 11 colums numbered 0 to 10. These refer to the time periods. There will be three rows under these columns. The first row is called time (in years). For this problem it will be the period number divided by 2. The second row will contain the cash flows. For this problem it will be a row of 2.5 dollars starting from period 1 and ending in period 9. In period 10 there will be a cash flow of The final row will then contain the present value of each of these cash flows. The bond price is then obtained by adding these numbers up. Confirm that you obtain a value of Note that if we change the number of periods, we will have to add more columns in our spreadsheet. So this method is not very useful. (b) Now repeat the exercise of pricing this bond, but this time use the analytical formula for bond pricing. So in one equation, using the variable names, you can obtain the price. This formula has an advantage over (a) in that the number of periods can be changed and the price will automatically update. (c)now compute the bond price using the PV function in excel. This function requires the Rate (Rate), Number of periods (N), coup (c), and face value, (FV), as inputs. (d) Finally, compute the bond price using the PRICE function in excel. This function requires the settlement date, the maturity date, annual coupon rate, yieldtomaturity, face value and the number of payments. To use it for an example make up a settle date (eg 01/01/2000) and then add 5 years to get the maturity date. To do this use the excel DATE command eg DATE(2000+5,1,1). This will give you a maturity date exactly 5 years later. In general the PRICE function gives you a quoted, flat, or clean price. The actual invoice, full, or dirty price is obtained by adding on the accrued interest. In this above problem there is no accrued interest so the clean and dirty prices are equal. We will use the PRICE function in the next chapter.
Interest Rate and Credit Risk Derivatives
Interest Rate and Credit Risk Derivatives Interest Rate and Credit Risk Derivatives Peter Ritchken Kenneth Walter Haber Professor of Finance Weatherhead School of Management Case Western Reserve University
More informationAnalysis of Deterministic Cash Flows and the Term Structure of Interest Rates
Analysis of Deterministic Cash Flows and the Term Structure of Interest Rates Cash Flow Financial transactions and investment opportunities are described by cash flows they generate. Cash flow: payment
More informationIn this chapter we will learn about. Treasury Notes and Bonds, Treasury Inflation Protected Securities,
2 Treasury Securities In this chapter we will learn about Treasury Bills, Treasury Notes and Bonds, Strips, Treasury Inflation Protected Securities, and a few other products including Eurodollar deposits.
More informationANALYSIS OF FIXED INCOME SECURITIES
ANALYSIS OF FIXED INCOME SECURITIES Valuation of Fixed Income Securities Page 1 VALUATION Valuation is the process of determining the fair value of a financial asset. The fair value of an asset is its
More informationFixed Income: Practice Problems with Solutions
Fixed Income: Practice Problems with Solutions Directions: Unless otherwise stated, assume semiannual payment on bonds.. A 6.0 percent bond matures in exactly 8 years and has a par value of 000 dollars.
More information5. Time value of money
1 Simple interest 2 5. Time value of money With simple interest, the amount earned each period is always the same: i = rp o We will review some tools for discounting cash flows. where i = interest earned
More informationChapter. Bond Prices and Yields. McGrawHill/Irwin. Copyright 2008 by The McGrawHill Companies, Inc. All rights reserved.
Chapter Bond Prices and Yields McGrawHill/Irwin Copyright 2008 by The McGrawHill Companies, Inc. All rights reserved. Bond Prices and Yields Our goal in this chapter is to understand the relationship
More informationBond valuation. Present value of a bond = present value of interest payments + present value of maturity value
Bond valuation A reading prepared by Pamela Peterson Drake O U T L I N E 1. Valuation of longterm debt securities 2. Issues 3. Summary 1. Valuation of longterm debt securities Debt securities are obligations
More informationYou just paid $350,000 for a policy that will pay you and your heirs $12,000 a year forever. What rate of return are you earning on this policy?
1 You estimate that you will have $24,500 in student loans by the time you graduate. The interest rate is 6.5%. If you want to have this debt paid in full within five years, how much must you pay each
More informationInterest Rate Futures. Chapter 6
Interest Rate Futures Chapter 6 1 Day Count Convention The day count convention defines: The period of time to which the interest rate applies. The period of time used to calculate accrued interest (relevant
More informationCHAPTER 15: THE TERM STRUCTURE OF INTEREST RATES
CHAPTER : THE TERM STRUCTURE OF INTEREST RATES CHAPTER : THE TERM STRUCTURE OF INTEREST RATES PROBLEM SETS.. In general, the forward rate can be viewed as the sum of the market s expectation of the future
More informationCHAPTER 6 DISCOUNTED CASH FLOW VALUATION
CHAPTER 6 DISCOUNTED CASH FLOW VALUATION Answers to Concepts Review and Critical Thinking Questions 1. The four pieces are the present value (PV), the periodic cash flow (C), the discount rate (r), and
More informationPRESENT VALUE ANALYSIS. Time value of money equal dollar amounts have different values at different points in time.
PRESENT VALUE ANALYSIS Time value of money equal dollar amounts have different values at different points in time. Present value analysis tool to convert CFs at different points in time to comparable values
More informationCHAPTER 5 INTRODUCTION TO VALUATION: THE TIME VALUE OF MONEY
CHAPTER 5 INTRODUCTION TO VALUATION: THE TIME VALUE OF MONEY 1. The simple interest per year is: $5,000.08 = $400 So after 10 years you will have: $400 10 = $4,000 in interest. The total balance will be
More informationChapter 11. Bond Pricing  1. Bond Valuation: Part I. Several Assumptions: To simplify the analysis, we make the following assumptions.
Bond Pricing  1 Chapter 11 Several Assumptions: To simplify the analysis, we make the following assumptions. 1. The coupon payments are made every six months. 2. The next coupon payment for the bond is
More informationChapter 6. Discounted Cash Flow Valuation. Key Concepts and Skills. Multiple Cash Flows Future Value Example 6.1. Answer 6.1
Chapter 6 Key Concepts and Skills Be able to compute: the future value of multiple cash flows the present value of multiple cash flows the future and present value of annuities Discounted Cash Flow Valuation
More informationThe Basics of Interest Theory
Contents Preface 3 The Basics of Interest Theory 9 1 The Meaning of Interest................................... 10 2 Accumulation and Amount Functions............................ 14 3 Effective Interest
More informationCHAPTER 5 INTRODUCTION TO VALUATION: THE TIME VALUE OF MONEY
CHAPTER 5 INTRODUCTION TO VALUATION: THE TIME VALUE OF MONEY Answers to Concepts Review and Critical Thinking Questions 1. The four parts are the present value (PV), the future value (FV), the discount
More informationMath of Finance. Texas Association of Counties January 2014
Math of Finance Texas Association of Counties January 2014 Money Market Securities Sample Treasury Bill Quote*: N Bid Ask Ask Yld 126 4.86 4.85 5.00 *(Yields do not reflect current market conditions) Bank
More informationZeroCoupon Bonds (Pure Discount Bonds)
ZeroCoupon Bonds (Pure Discount Bonds) The price of a zerocoupon bond that pays F dollars in n periods is F/(1 + r) n, where r is the interest rate per period. Can meet future obligations without reinvestment
More informationClick Here to Buy the Tutorial
FIN 534 Week 4 Quiz 3 (Str) Click Here to Buy the Tutorial http://www.tutorialoutlet.com/fin534/fin534week4quiz3 str/ For more course tutorials visit www.tutorialoutlet.com Which of the following
More information3. Time value of money. We will review some tools for discounting cash flows.
1 3. Time value of money We will review some tools for discounting cash flows. Simple interest 2 With simple interest, the amount earned each period is always the same: i = rp o where i = interest earned
More information, plus the present value of the $1,000 received in 15 years, which is 1, 000(1 + i) 30. Hence the present value of the bond is = 1000 ;
2 Bond Prices A bond is a security which offers semiannual* interest payments, at a rate r, for a fixed period of time, followed by a return of capital Suppose you purchase a $,000 utility bond, freshly
More informationCALCULATOR TUTORIAL. Because most students that use Understanding Healthcare Financial Management will be conducting time
CALCULATOR TUTORIAL INTRODUCTION Because most students that use Understanding Healthcare Financial Management will be conducting time value analyses on spreadsheets, most of the text discussion focuses
More informationCHAPTER 8 INTEREST RATES AND BOND VALUATION
CHAPTER 8 INTEREST RATES AND BOND VALUATION Answers to Concept Questions 1. No. As interest rates fluctuate, the value of a Treasury security will fluctuate. Longterm Treasury securities have substantial
More informationCHAPTER 15: THE TERM STRUCTURE OF INTEREST RATES
Chapter  The Term Structure of Interest Rates CHAPTER : THE TERM STRUCTURE OF INTEREST RATES PROBLEM SETS.. In general, the forward rate can be viewed as the sum of the market s expectation of the future
More informationFin 3312 Sample Exam 1 Questions
Fin 3312 Sample Exam 1 Questions Here are some representative type questions. This review is intended to give you an idea of the types of questions that may appear on the exam, and how the questions might
More informationFinding the Payment $20,000 = C[1 1 / 1.0066667 48 ] /.0066667 C = $488.26
Quick Quiz: Part 2 You know the payment amount for a loan and you want to know how much was borrowed. Do you compute a present value or a future value? You want to receive $5,000 per month in retirement.
More informationFINANCIAL MATHEMATICS MONEY MARKET
FINANCIAL MATHEMATICS MONEY MARKET 1. Methods of Interest Calculation, Yield Curve and Quotation... 2 1.1 Methods to Calculate Interest... 2 1.2 The Yield Curve... 6 1.3 Interpolation... 8 1.4 Quotation...
More informationSolutions 2. 1. For the benchmark maturity sectors in the United States Treasury bill markets,
FIN 472 Professor Robert Hauswald FixedIncome Securities Kogod School of Business, AU Solutions 2 1. For the benchmark maturity sectors in the United States Treasury bill markets, Bloomberg reported the
More informationChapter 8. Step 2: Find prices of the bonds today: n i PV FV PMT Result Coupon = 4% 29.5 5? 100 4 84.74 Zero coupon 29.5 5? 100 0 23.
Chapter 8 Bond Valuation with a Flat Term Structure 1. Suppose you want to know the price of a 10year 7% coupon Treasury bond that pays interest annually. a. You have been told that the yield to maturity
More informationCHAPTER 2. Time Value of Money 21
CHAPTER 2 Time Value of Money 21 Time Value of Money (TVM) Time Lines Future value & Present value Rates of return Annuities & Perpetuities Uneven cash Flow Streams Amortization 22 Time lines 0 1 2 3
More informationCHAPTER 5. Interest Rates. Chapter Synopsis
CHAPTER 5 Interest Rates Chapter Synopsis 5.1 Interest Rate Quotes and Adjustments Interest rates can compound more than once per year, such as monthly or semiannually. An annual percentage rate (APR)
More informationCHAPTER 14: BOND PRICES AND YIELDS
CHAPTER 14: BOND PRICES AND YIELDS 1. a. Effective annual rate on 3month Tbill: ( 100,000 97,645 )4 1 = 1.02412 4 1 =.10 or 10% b. Effective annual interest rate on coupon bond paying 5% semiannually:
More informationFNCE 301, Financial Management H Guy Williams, 2006
REVIEW We ve used the DCF method to find present value. We also know shortcut methods to solve these problems such as perpetuity present value = C/r. These tools allow us to value any cash flow including
More informationCHAPTER 8 INTEREST RATES AND BOND VALUATION
CHAPTER 8 INTEREST RATES AND BOND VALUATION Solutions to Questions and Problems 1. The price of a pure discount (zero coupon) bond is the present value of the par value. Remember, even though there are
More informationHow To Value A Bond In Excel
Financial Modeling Templates http://spreadsheetml.com/finance/bondvaluationyieldtomaturity.shtml Copyright (c) 20092014, ConnectCode All Rights Reserved. ConnectCode accepts no responsibility for any
More informationLOS 56.a: Explain steps in the bond valuation process.
The following is a review of the Analysis of Fixed Income Investments principles designed to address the learning outcome statements set forth by CFA Institute. This topic is also covered in: Introduction
More informationCalculations for Time Value of Money
KEATMX01_p001008.qxd 11/4/05 4:47 PM Page 1 Calculations for Time Value of Money In this appendix, a brief explanation of the computation of the time value of money is given for readers not familiar with
More informationNATIONAL STOCK EXCHANGE OF INDIA LIMITED
NATIONAL STOCK EXCHANGE OF INDIA LIMITED Capital Market FAQ on Corporate Bond Date : September 29, 2011 1. What are securities? Securities are financial instruments that represent a creditor relationship
More informationAmerican Options and Callable Bonds
American Options and Callable Bonds American Options Valuing an American Call on a Coupon Bond Valuing a Callable Bond Concepts and Buzzwords Interest Rate Sensitivity of a Callable Bond exercise policy
More informationChapter 6. Learning Objectives Principles Used in This Chapter 1. Annuities 2. Perpetuities 3. Complex Cash Flow Streams
Chapter 6 Learning Objectives Principles Used in This Chapter 1. Annuities 2. Perpetuities 3. Complex Cash Flow Streams 1. Distinguish between an ordinary annuity and an annuity due, and calculate present
More informationCHAPTER 14: BOND PRICES AND YIELDS
CHAPTER 14: BOND PRICES AND YIELDS PROBLEM SETS 1. The bond callable at 105 should sell at a lower price because the call provision is more valuable to the firm. Therefore, its yield to maturity should
More informationTVM Applications Chapter
Chapter 6 Time of Money UPS, Walgreens, Costco, American Air, Dreamworks Intel (note 10 page 28) TVM Applications Accounting issue Chapter Notes receivable (longterm receivables) 7 Longterm assets 10
More informationBasic financial arithmetic
2 Basic financial arithmetic Simple interest Compound interest Nominal and effective rates Continuous discounting Conversions and comparisons Exercise Summary File: MFME2_02.xls 13 This chapter deals
More informationExercise 1 for Time Value of Money
Exercise 1 for Time Value of Money MULTIPLE CHOICE 1. Which of the following statements is CORRECT? a. A time line is not meaningful unless all cash flows occur annually. b. Time lines are useful for visualizing
More informationRiskFree Assets. Case 2. 2.1 Time Value of Money
2 RiskFree Assets Case 2 Consider a doityourself pension fund based on regular savings invested in a bank account attracting interest at 5% per annum. When you retire after 40 years, you want to receive
More informationDiscounted Cash Flow Valuation
6 Formulas Discounted Cash Flow Valuation McGrawHill/Irwin Copyright 2008 by The McGrawHill Companies, Inc. All rights reserved. Chapter Outline Future and Present Values of Multiple Cash Flows Valuing
More informationInternational Financial Strategies Time Value of Money
International Financial Strategies 1 Future Value and Compounding Future value = cash value of the investment at some point in the future Investing for single period: FV. Future Value PV. Present Value
More informationEurodollar Futures, and Forwards
5 Eurodollar Futures, and Forwards In this chapter we will learn about Eurodollar Deposits Eurodollar Futures Contracts, Hedging strategies using ED Futures, Forward Rate Agreements, Pricing FRAs. Hedging
More informationMathematics. Rosella Castellano. Rome, University of Tor Vergata
and Loans Mathematics Rome, University of Tor Vergata and Loans Future Value for Simple Interest Present Value for Simple Interest You deposit E. 1,000, called the principal or present value, into a savings
More informationExcel Financial Functions
Excel Financial Functions PV() Effect() Nominal() FV() PMT() Payment Amortization Table Payment Array Table NPer() Rate() NPV() IRR() MIRR() Yield() Price() Accrint() Future Value How much will your money
More informationCHAPTER 15: THE TERM STRUCTURE OF INTEREST RATES
CHAPTER 15: THE TERM STRUCTURE OF INTEREST RATES 1. Expectations hypothesis. The yields on longterm bonds are geometric averages of present and expected future short rates. An upward sloping curve is
More informationDick Schwanke Finite Math 111 Harford Community College Fall 2013
Annuities and Amortization Finite Mathematics 111 Dick Schwanke Session #3 1 In the Previous Two Sessions Calculating Simple Interest Finding the Amount Owed Computing Discounted Loans Quick Review of
More informationFinancial Math on Spreadsheet and Calculator Version 4.0
Financial Math on Spreadsheet and Calculator Version 4.0 2002 Kent L. Womack and Andrew Brownell Tuck School of Business Dartmouth College Table of Contents INTRODUCTION...1 PERFORMING TVM CALCULATIONS
More informationCHAPTER 4 DISCOUNTED CASH FLOW VALUATION
CHAPTER 4 DISCOUNTED CASH FLOW VALUATION Answers to Concepts Review and Critical Thinking Questions 1. Assuming positive cash flows and interest rates, the future value increases and the present value
More informationCHAPTER 5 HOW TO VALUE STOCKS AND BONDS
CHAPTER 5 HOW TO VALUE STOCKS AND BONDS Answers to Concepts Review and Critical Thinking Questions 1. Bond issuers look at outstanding bonds of similar maturity and risk. The yields on such bonds are used
More information Short term notes (bonds) Maturities of 14 years  Mediumterm notes/bonds Maturities of 510 years  Longterm bonds Maturities of 1030 years
Contents 1. What Is A Bond? 2. Who Issues Bonds? Government Bonds Corporate Bonds 3. Basic Terms of Bonds Maturity Types of Coupon (Fixed, Floating, Zero Coupon) Redemption Seniority Price Yield The Relation
More informationVilnius University. Faculty of Mathematics and Informatics. Gintautas Bareikis
Vilnius University Faculty of Mathematics and Informatics Gintautas Bareikis CONTENT Chapter 1. SIMPLE AND COMPOUND INTEREST 1.1 Simple interest......................................................................
More informationFI 302, Business Finance Exam 2, Fall 2000 versions 1 & 8 KEYKEYKEYKEYKEYKEYKEYKEYKEYKEYKEYKEYKEY
FI 302, Business Finance Exam 2, Fall 2000 versions 1 & 8 KEYKEYKEYKEYKEYKEYKEYKEYKEYKEYKEYKEYKEY 1. (3 points) BS16 What is a 401k plan Most U.S. households single largest lifetime source of savings is
More informationAbout Compound Interest
About Compound Interest TABLE OF CONTENTS About Compound Interest... 1 What is COMPOUND INTEREST?... 1 Interest... 1 Simple Interest... 1 Compound Interest... 1 Calculations... 3 Calculating How Much to
More informationDISCOUNTED CASH FLOW VALUATION and MULTIPLE CASH FLOWS
Chapter 5 DISCOUNTED CASH FLOW VALUATION and MULTIPLE CASH FLOWS The basic PV and FV techniques can be extended to handle any number of cash flows. PV with multiple cash flows: Suppose you need $500 one
More informationFinancial Mathematics for Actuaries. Chapter 1 Interest Accumulation and Time Value of Money
Financial Mathematics for Actuaries Chapter 1 Interest Accumulation and Time Value of Money 1 Learning Objectives 1. Basic principles in calculation of interest accumulation 2. Simple and compound interest
More informationFinQuiz Notes 2 0 1 4
Reading 5 The Time Value of Money Money has a time value because a unit of money received today is worth more than a unit of money to be received tomorrow. Interest rates can be interpreted in three ways.
More informationThe Time Value of Money
The following is a review of the Quantitative Methods: Basic Concepts principles designed to address the learning outcome statements set forth by CFA Institute. This topic is also covered in: The Time
More informationHow To Calculate The Value Of A Project
Chapter 02 How to Calculate Present Values Multiple Choice Questions 1. The present value of $100 expected in two years from today at a discount rate of 6% is: A. $116.64 B. $108.00 C. $100.00 D. $89.00
More informationChapter 19. Web Extension: Rights Offerings and Zero Coupon Bonds. Rights Offerings
Chapter 19 Web Extension: Rights Offerings and Zero Coupon Bonds T his Web Extension discusses two additional topics in financial restructuring: rights offerings and zero coupon bonds. Rights Offerings
More informationAnswers to Review Questions
Answers to Review Questions 1. The real rate of interest is the rate that creates an equilibrium between the supply of savings and demand for investment funds. The nominal rate of interest is the actual
More informationExam 1 Morning Session
91. A high yield bond fund states that through active management, the fund s return has outperformed an index of Treasury securities by 4% on average over the past five years. As a performance benchmark
More informationKey Concepts and Skills. Multiple Cash Flows Future Value Example 6.1. Chapter Outline. Multiple Cash Flows Example 2 Continued
6 Calculators Discounted Cash Flow Valuation Key Concepts and Skills Be able to compute the future value of multiple cash flows Be able to compute the present value of multiple cash flows Be able to compute
More informationHow to calculate present values
How to calculate present values Back to the future Chapter 3 Discounted Cash Flow Analysis (Time Value of Money) Discounted Cash Flow (DCF) analysis is the foundation of valuation in corporate finance
More informationAsset Valuation Debt Investments: Analysis and Valuation
Asset Valuation Debt Investments: Analysis and Valuation Joel M. Shulman, Ph.D, CFA Study Session # 15 Level I CFA CANDIDATE READINGS: Fixed Income Analysis for the Chartered Financial Analyst Program:
More informationSolutions to Supplementary Questions for HP Chapter 5 and Sections 1 and 2 of the Supplementary Material. i = 0.75 1 for six months.
Solutions to Supplementary Questions for HP Chapter 5 and Sections 1 and 2 of the Supplementary Material 1. a) Let P be the recommended retail price of the toy. Then the retailer may purchase the toy at
More informationModule 5: Interest concepts of future and present value
Page 1 of 23 Module 5: Interest concepts of future and present value Overview In this module, you learn about the fundamental concepts of interest and present and future values, as well as ordinary annuities
More informationThe Institute of Chartered Accountants of India
CHAPTER 4 SIMPLE AND COMPOUND INTEREST INCLUDING ANNUITY APPLICATIONS SIMPLE AND COMPOUND INTEREST INCLUDING ANNUITY APPLICATIONS LEARNING OBJECTIVES After studying this chapter students will be able
More informationPresent Value (PV) Tutorial
EYK 151 Present Value (PV) Tutorial The concepts of present value are described and applied in Chapter 15. This supplement provides added explanations, illustrations, calculations, present value tables,
More information2. Determine the appropriate discount rate based on the risk of the security
Fixed Income Instruments III Intro to the Valuation of Debt Securities LOS 64.a Explain the steps in the bond valuation process 1. Estimate the cash flows coupons and return of principal 2. Determine the
More informationFinance 350: Problem Set 6 Alternative Solutions
Finance 350: Problem Set 6 Alternative Solutions Note: Where appropriate, the final answer for each problem is given in bold italics for those not interested in the discussion of the solution. I. Formulas
More informationDick Schwanke Finite Math 111 Harford Community College Fall 2013
Annuities and Amortization Finite Mathematics 111 Dick Schwanke Session #3 1 In the Previous Two Sessions Calculating Simple Interest Finding the Amount Owed Computing Discounted Loans Quick Review of
More informationACI THE FINANCIAL MARKETS ASSOCIATION
ACI THE FINANCIAL MARKETS ASSOCIATION EXAMINATION FORMULAE 2009 VERSION page number INTEREST RATE..2 MONEY MARKET..... 3 FORWARDFORWARDS & FORWARD RATE AGREEMENTS..4 FIXED INCOME.....5 FOREIGN EXCHANGE
More informationBond Pricing Fundamentals
Bond Pricing Fundamentals Valuation What determines the price of a bond? Contract features: coupon, face value (FV), maturity Riskfree interest rates in the economy (US treasury yield curve) Credit risk
More informationChapter The Time Value of Money
Chapter The Time Value of Money PPT 92 Chapter 9  Outline Time Value of Money Future Value and Present Value Annuities TimeValueofMoney Formulas Adjusting for NonAnnual Compounding Compound Interest
More informationGlobal Financial Management
Global Financial Management Bond Valuation Copyright 999 by Alon Brav, Campbell R. Harvey, Stephen Gray and Ernst Maug. All rights reserved. No part of this lecture may be reproduced without the permission
More informationFINANCIAL MATHEMATICS FIXED INCOME
FINANCIAL MATHEMATICS FIXED INCOME 1. Converting from Money Market Basis to Bond Basis and vice versa 2 2. Calculating the Effective Interest Rate (Nonannual Payments)... 4 3. Conversion of Annual into
More informationMONEY MARKET SUBCOMMITEE(MMS) FLOATING RATE NOTE PRICING SPECIFICATION
MONEY MARKET SUBCOMMITEE(MMS) FLOATING RATE NOTE PRICING SPECIFICATION This document outlines the use of the margin discounting methodology to price vanilla money market floating rate notes as endorsed
More informationTIME VALUE OF MONEY #6: TREASURY BOND. Professor Peter Harris Mathematics by Dr. Sharon Petrushka. Introduction
TIME VALUE OF MONEY #6: TREASURY BOND Professor Peter Harris Mathematics by Dr. Sharon Petrushka Introduction This problem assumes that you have mastered problems 15, which are prerequisites. In this
More informationCHAPTER 4. The Time Value of Money. Chapter Synopsis
CHAPTER 4 The Time Value of Money Chapter Synopsis Many financial problems require the valuation of cash flows occurring at different times. However, money received in the future is worth less than money
More information2 The Mathematics. of Finance. Copyright Cengage Learning. All rights reserved.
2 The Mathematics of Finance Copyright Cengage Learning. All rights reserved. 2.3 Annuities, Loans, and Bonds Copyright Cengage Learning. All rights reserved. Annuities, Loans, and Bonds A typical definedcontribution
More informationPowerPoint. to accompany. Chapter 5. Interest Rates
PowerPoint to accompany Chapter 5 Interest Rates 5.1 Interest Rate Quotes and Adjustments To understand interest rates, it s important to think of interest rates as a price the price of using money. When
More informationManual for SOA Exam FM/CAS Exam 2.
Manual for SOA Exam FM/CAS Exam 2. Chapter 5. Bonds. c 2009. Miguel A. Arcones. All rights reserved. Extract from: Arcones Manual for the SOA Exam FM/CAS Exam 2, Financial Mathematics. Fall 2009 Edition,
More informationFinance CHAPTER OUTLINE. 5.1 Interest 5.2 Compound Interest 5.3 Annuities; Sinking Funds 5.4 Present Value of an Annuity; Amortization
CHAPTER 5 Finance OUTLINE Even though you re in college now, at some time, probably not too far in the future, you will be thinking of buying a house. And, unless you ve won the lottery, you will need
More informationCHAPTER 4 DISCOUNTED CASH FLOW VALUATION
CHAPTER 4 DISCOUNTED CASH FLOW VALUATION Solutions to Questions and Problems NOTE: Allendof chapter problems were solved using a spreadsheet. Many problems require multiple steps. Due to space and readability
More information4 Annuities and Loans
4 Annuities and Loans 4.1 Introduction In previous section, we discussed different methods for crediting interest, and we claimed that compound interest is the correct way to credit interest. This section
More informationCHAPTER 16: MANAGING BOND PORTFOLIOS
CHAPTER 16: MANAGING BOND PORTFOLIOS PROBLEM SETS 1. While it is true that shortterm rates are more volatile than longterm rates, the longer duration of the longerterm bonds makes their prices and their
More informationBond Return Calculation Methodology
Bond Return Calculation Methodology Morningstar Methodology Paper June 30, 2013 2013 Morningstar, Inc. All rights reserved. The information in this document is the property of Morningstar, Inc. Reproduction
More informationThe Time Value of Money (contd.)
The Time Value of Money (contd.) February 11, 2004 Time Value Equivalence Factors (Discrete compounding, discrete payments) Factor Name Factor Notation Formula Cash Flow Diagram Future worth factor (compound
More informationChapter 4. The Time Value of Money
Chapter 4 The Time Value of Money 1 Learning Outcomes Chapter 4 Identify various types of cash flow patterns Compute the future value and the present value of different cash flow streams Compute the return
More informationBond Valuation. FINANCE 350 Global Financial Management. Professor Alon Brav Fuqua School of Business Duke University. Bond Valuation: An Overview
Bond Valuation FINANCE 350 Global Financial Management Professor Alon Brav Fuqua School of Business Duke University 1 Bond Valuation: An Overview Bond Markets What are they? How big? How important? Valuation
More informationFNCE 301, Financial Management H Guy Williams, 2006
Review In the first class we looked at the value today of future payments (introduction), how to value projects and investments. Present Value = Future Payment * 1 Discount Factor. The discount factor
More information